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Executive Summary  
The structure, purpose and use of Multi-Hazard Vulnerability Modules (MHVMs) are 

presented within the risk and resilience assessment ecosystem of PANOPTIS. MHVMs are 

software and data libraries with a standardizable format that encode the results of structural 

vulnerability assessment and enable a seamless integration of hazard simulators, structural 

analysis and consequence models into the HRAP model of the Road Infrastructure (RI) system. 

In addition, information is provided on selected RI and non-RI assets that better represent the 

vast portfolio of (geo)structures at threat for both Spanish and Greek demo sites. The assets are 

classified in either Tier I or Tier II category, depending on whether they are treated via asset-

specific fragility and consequence functions for the former or by employing class-specific ones 

for the latter. Highly detailed models are developed for the Tier I assets, together with the 

corresponding fast-running simplified surrogate models by quantifying and incorporating the 

epistemic uncertainty due to the detailed models’ reduction. For Tier II assets, only a limited 

number of characteristic “index” assets that better represent the entire class are selected and 

generic fragility and consequence functions are employed for risk assessment. All potential 

hazards of importance to each asset are considered and the entire potential range of stressors is 

applied to the numerical models in order to predict their response as well as the relevant damage 

at the detailed level of individual elements. This approach enables a high-resolution assessment 

of vulnerability, whereby loss, functionality and downtime are directly tied to 

rehabilitation/emergency action planning.   
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1 Introduction  
This document is the final outcome of Task 4.3 “Development of vulnerability modules” of 

Work Package 4 “Multi-Hazards Modelling, Vulnerability and Impact Assessment of the RI” 

of the PANOPTIS project. It concerns the definition and creation of the Multi-Hazard 

Vulnerability Modules (MHVMs) for use within the Holistic Risk Assessment Platform 

(HRAP) of PANOPTIS. MHVMs are essentially integrated software and data modules that 

characterize each unique asset of the Road Infrastructure (RI). They are site, user, and structure 

specific and they contain all the necessary data to allow estimating the consequences per asset 

given the input of each of the hazard assessment modules. 

In Section 2 the position of the Multi-Hazard Vulnerability Modules (MHVMs) in the 

PANOPTIS ecosystem is presented. The theoretical background for fragility and vulnerability 

and their use in risk assessment and resilience are described in Section 3. In Sections 4 and 5 

the characteristic RI and non-RI assets that are analyzed and taken into account in the risk 

assessment process are described, both for the Spanish and the Greek demo site. All potential 

hazards of importance for the PANOPTIS project are determined for each asset. The Multi-

Hazard Vulnerability Module consists of two files: scenario MSA and metadata file. An asset’s 

dynamic analysis results are stored in the multi-stripe analysis file, “msa.mat / msa.xml”, while 

fragility and vulnerability data are stored in the Metadata file, “mtdata.mat / mtdata.xml”, 

whose structure is presented in Section 6. Combining the data from both files, all potential 

scenarios of what may happen to the asset are identified. By combining these potential asset’s 

scenarios with the IM fields “all” potential scenarios that may happen on the RI are determined 

in the pre-event operation phase of PANOPTIS. After or during the event, the large logic tree 

of all potential scenarios is pruned down using sensors data. An advanced algorithm is 

developed that correlates measured data with the expected failure patterns of the assets, which 

enables a seamless integration of hazard simulators and vulnerability results into the HARP 

model of the RI system.  
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2 Position in PANOPTIS Ecosystem 
Figure 1 illustrates the PANOPTIS logical architecture as defined in deliverable D2.3 

“Architecture specification” (Vamvatsikos et al. 2019). The dashed rectangle shows the 

position of the Multi-Hazard Vulnerability Module in the PANOPTIS Ecosystem. Essentially, 

MHVMs are created offline via the SGSA simulator, they read their hazard scenario inputs 

from the hazard simulators (as archived in the middleware, DATAMID) and feed their output 

into HRAP (HRAP and HRAP-STRUCT) for performing risk and resilience assessment to be 

returned back to the middleware for storage. 

 

 
 

(a) Entire PANOPTIS ecosystem 

 

 
(b) Interactions of VULNER with HRAP and the Data Middleware (DATAMID) 

Figure 1: Position of the multi-hazard vulnerability module (VULNER) within the PANOPTIS 

ecosystem. 

Reads hazard & 
MSA data 

Produces MHVMs 
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3 Theoretical implications  

3.1 IM approach 
The analytical estimation of losses involves combining the hazard as determined by e.g. 

seismologists (in case of the seismic hazard) with the results of (geo)structural analyses 

evaluated by engineers. Typically, in the so-called conditional risk assessment methods 

(Bazzurro et al. 1998) an interface variable is employed between the hazard analysis and 

(geo)structural analysis, that is the Intensity Measure (IM). IM is a point of contact between 

the different disciplines attempting to incorporate all complexity of the hazard-specific loading 

into a single quantity that can be used as input for the (geo)structural analysis, without needing 

to account for the all the diverse characteristics of the loading. For instance, when considering 

the seismic hazard, seismologists estimate the statistical properties of the IM through 

Probabilistic Seismic Hazard Analysis (Cornell 1968) while engineers economize by assessing 

structural response and losses conditioned on the level of IM rather than a combination of 

magnitude, distance and other seismological parameters. To achieve this desirable decoupling, 

the IM needs to be efficient and sufficient with respect to the characteristics of the hazard 

examined (Luco and Cornell 2007). 

IM efficiency means that the selected IM should be a good predictor of the (geo)structural 

response, as measured by the asset’s Engineering Demand Parameter (EDP) of interest. This 

enables achieving the desirable level of confidence on the numerical analysis results with a 

small number of time-history analyses. IM sufficiency means that the IM should render an 

asset’s response independent of other characteristics of the hazard. A sufficient IM selected for 

seismic risk assessment would remove any bias from considering the magnitude, distance and 

other seismological parameters of the ground motion records rather than the IM. The goals of 

efficiency and sufficiency are not necessarily the same, as the former aims at reducing the 

variability in the dynamic analysis results, while the latter at reducing the dependence of the 

results on other characteristics of the hazard rather than the IM. Note that the reduction in the 

response dispersion gained by an efficient IM does not mean that the overall risk variability is 

reduced, since part of the variability is simply shifted to a different level within the risk 

estimation assessment. 

In the PANOPTIS framework, the IMs of interest are split in two groups namely primary and 

cascading IMs. Primary IMs can be directly determined through hazard analysis, while simple 

analytical models are employed to produce cascading IMs using the primary IM as an input. In 

Table 1 examples of primary and cascading IMs are listed for the seismic and the weather-

related hazards. In the former case, PGA is the peak ground acceleration, Sa(T1) is the spectral 

acceleration at the fundamental period of the structure and AvgSa is the average spectral 

acceleration computed as the geomean of spectral acceleration values at different periods. To 

determine the resulting slope-deformation, a geotechnical model can be employed for 

computing the cascading IM of slope lateral spreading. Regarding weather-related hazards, the 

primary wind/temperature/precipitation IMs are employed in conjunction with (i) a 

wind/pressure profile to determine dynamic pressures on structures; (ii) a hydraulic model for 

determining, e.g., the pluvial flood height, soil erosion and soil pore pressure; (iii) an ice 

accretion model for estimating the accumulated ice on exposed steel members given 

temperature and precipitation.  

Table 1: Examples of IMs per hazard. 

Hazard Primary IMs Cascading IMs 

Seismic PGA, Sa(T1), AvgSa Slope lateral spreading 

Weather 
Wind speed/direction/gust factor, 

temperature, Precipitation etc. 

Flood height, soil pore pressure/water table 

elevation, accumulated ice  









Deliverable D4.7  Version 1.0 Date31/05/2020  17  

 

 

probability of being in each damage state for sequential damage states is estimated as per Eq. 

(4) and indicated by the black arrowed lines in the same Figure. 

 1( | ) ( ) ( )i LSi LSiP in DS IM F IM F IM   (4) 

 
Figure 5: Fragility curves for three sequential limit states. The black arrowed lines indicate the 

probability of beeing in each damage for a certain IM value. 

The most comprehensive analytical methods for fragility assessment rely on advanced 

numerical models subjected to nonlinear dynamic analyses. In PANOPTIS multi-stripe 

analysis is employed for analyzing the response of the assets. The fragility curves are defined 

through MSA results given the EDP threshold values corresponding to each damage state, as 

indicatively shown in Figure 6. 

  
(a) (b) 

Figure 6: (a) Example of MSA results and (b) discrete versus fitted collapse fragility function (Baker 

2015). 

3.3.2 Vulnerability functions 

Vulnerability functions are probabilistic distributions of loss given the IM level. They translate 

the physical damage into monetary loss, repair time, downtime, traffic capacity reduction etc. 

given the level of the IM. The vulnerability functions can either be derived directly, using 

empirical methods by considering losses from past events at given locations with the IM of the 
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event, or analytically, as schematically shown in Figure 7 through the combination of fragility 

and consequence functions. The consequence functions are probabilistic distributions of losses 

given a performance level that are mainly derived empirically.  

 
Figure 7: Framework for analytical estimation of vulnerability of a single asset (Porter 2019). 

In PANOPTIS, the following two approaches are used to define assets’ vulnerability curves: 

Component-based vulnerability assessment approach 

This is the approach of FEMA P-58 (ATC 2009) where vulnerability functions are obtained by 

correlating components’ EDPs directly to loss. It requires detailed information in terms of 

fragility and loss functions on all vulnerable components of each asset. The mean vulnerability 

function per component category the behavior of which is controlled by EDPi is calculated as: 

  (5) 

where i is an index to the component category, L is the loss, Nds is the number of possible 

component damage states, Ni,h is the quantity of components of category i in group h and mi,ds 

is the mean loss per unit of component category i in damage state ds.  

System-only vulnerability assessment approach 
In this approach the vulnerability functions are obtained by convolving system-level fragility 

curves with the corresponding cumulative cost/consequences of an asset’s damage state i, DSi. 

The mean vulnerability curve is calculated according to Eq. (6): 

  (6) 

where NDS is the number of damage states, P(DSi | IM) is the probability of being in damage 

state i given the IM, E(L | DSi) is the cumulative distribution of loss (e.g. cost/downtime etc.) 

given DSi and E(L | IM) is the cumulative distribution of loss given the IM. An example of 

vulnerability curve estimation using deterministic loss data is schematically shown in Figure 

8. The variance, var(L | IM), of the vulnerability curve is obtained according to Eq. (7): 

  (7) 

 






































































































